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Abstract. Earlier work on unique labelling schemes in Oh symmetry is extended to include 
48-atom shells and the symmetry coordinates of shells subject to periodicity conditions. 
A new approach to labelling is introduced based on the concept of cyclic regions in a 
crystal. These are described by finite factor groups of the crystallographic space group 
which contain the isogonal group as a subgroup. Some examples are worked out in detail. 

1. Introduction 

Previous studies by Newman (1981) and Chen and Newman (1982) (denoted hence- 
forth as I and I1 respectively) were concerned with providing unique group theoretical 
labels for atomic shell symmetry coordinates and using this scheme as a means of 
generating the symmetry coordinates explicitly. The approach in I and I1 differed 
from the considerable body of work on molecular symmetry coordinates (e.g. see 
Fieck 1977) in that the labelling problem was seen to be prior to the actual generation 
of symmetry coordinates. The difference of approach is related to an essential 
difference between the molecular and crystal problems: in the latter case it is certain, 
at some distance from the centre of symmetry, that the number of atoms in the shell 
will equal the number of symmetry operators in the point group, so that their 
permutations will generate a regular representation. The aim of a labelling scheme 
is to provide means of distinguishing the repeated (multidimensional) irreducible 
representations which appear in the regular representation and other representations 
generated by shells with smaller numbers of atoms. 

In the present work we provide an explicit method of generating the symmetry 
coordinates for the 48-atom shell in Oh symmetry (which generates the regular 
representation). It will be seen to be advantageous to regard other shells (e.g. with 
24 atoms and 12 atoms) as special cases of the 48-atom shell in order to obtain a 
systematic labelling and method of generating symmetry coordinates. 

Following this we investigate the modifications of symmetry coordinates that are 
necessary when the crystal is divided into regions with periodic boundary conditions. 
We shall refer to such regions as ‘cyclic regions’. Our interest in such regions is that 
the solutions of vibrational and one-electron problems in cyclic regions correspond 
to solutions of the same problem in the full crystal for certain points in the Brillouin 
zone. Lattice impurity effects can then be treated as causing perturbations of this 
restricted set of solutions. 
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The introduction of cyclic regions suggests a new approach to the labelling of 
lattice distortions near a substituted impurity ion. Instead of using a shell label and 
a symmetry label for each symmetry coordinate, it is possible to use either space 
group labels or, more specifically, the labels of the symmetry group describing the 
cyclic region. Such cyclic region groups (and their character tables) can easily be 
constructed from space group tabulations (such as Bradley and Cracknell 1972). We 
give an example of this approach in Ei 4. 

2. Symmetry coordinates for the 48-atom shell 

The unique labelling scheme described in I was based on two ideas. 
(a) The permutations of atomic positions and rotations of atomic displacements 

may be associated with separate irreducible representations of the symmetry group 
G. Symmetry coordinates can be constructed by coupling products of these representa- 
tions using the Clebsch-Gordan coefficients of G. 

(b) If the permutation representation contains repeated representations, these can 
be distinguished by relating them to representations induced in G from a subgroup 
describing the spatial symmetry of a subshell of atoms. For the unique labelling of a 
regular representation it is necessary to choose a subshell corresponding to an Abelian 
symmetry group. 

In I1 a notation was introduced in which the unique labels were written, for 
example, as ( E ~ T ~ , , O T ~ , , ) A ~ ~  corresponding to the group structure ( ~ ~ ~ 1 0 ~ 8  OhiOh. 
The first label (E) corresponds to the subgroup (C4\l representation and serves to 
distinguish repetitions of the Tzu irreducible components in the representation gener- 
ated by atomic permutations. We shall point out some limitations of this notation in 
the following discussion. 

In order to complete the theory of atom shells in o h  symmetry and to provide a 
unified labelling for shells with different numbers of atoms, we have determined 
symmetry coordinates for the (maximal) 48-fold atom shell corresponding to the 
regular representation of o h .  The unique labelling of this shell has been described 
in paper I (where three alternative labelling schemes are given in table 2) and can be 
used to determine explicit symmetry coordinates. The following discussion is based 
on the atom labelling shown in figure 1. 

We shall adopt a rather different approach from that used in I and 11. in which 
there was presumed to be some physical advantage in choosing subshells of neighbour- 
ing atoms (Bates 1978). When writing I it was not appreciated just how much freedom 
exists in the choice of subshells in using the correlation theorem (Wilson et a1 1955). 
They can, in fact, be generated from an arbitrary initial atomic position using a n y  

one of the set of conjugate subgroups to be used in the labelling. In other words, if 
we wish the labelling to be explicit (as well as unique) in the sense of corresponding 
to determinate symmetry coordinates, it is necessary to specify the form of the 
subshells. 

Permutation symmetry coordinates have been determined for both the C;, and 
Dhh subgroup labelling of the 48-element regular representation. The primes indicate 
that the principal axis of C;, is coincident with a Ci axis in O h  and D;h = C;, 0% 
has two Ch axes. 

We first discuss the Ci, labelling, which was shown in I to be unique. Table 1 
shows the irreducible representations of 0, induced by C;, according to the correlation 



Unique labelling and cyclic regions in crystals 3385 

I 
I 

I 
I 

61t 
I 
I 
I 
I 
8 
I 
I 
I 
1 

I 
I 
I 

6,. 

/ I I 

129 

3 I 
I 
I 
I 
I 

I 
I 

I 
I 
I 

I 
I , 

I 
,013 , 

I 

I 
I 
031  

\ 

\ 

Figure 1. Numbering of the atom positions in a 48-atom shell. 

Table 1. Irreducible representation labels of the permutation representations based on 
Civ subshells. 

table given in I. Using the labels of figure 1, it is easy to see that a consistent 4-atom 
C;, subshell labelling may be achieved as in table 2. The four C;, modes, in terms 
of the subshell atom labels shown in the first column in table 2, are given by 

Ai: (1)+(2)+(3)+(4)+Aig 

A2: (1)-(2)+(3)-(4)+Aiu 

Bi: (1)-(2)-(3)+(4)+&, 

B2: (1) + (2) -(3)-(4) + A2u (2.1) 
where the signs are determined from the characters shown on the right-hand side of 
table 2. On the right-hand side we give the irreducible representations of Oh which 
are induced by assuming that all 12 subshells (as defined in table 2) are associated 
with the same sign combinations as those given above. 
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The permutation representations for the 48-fold shell can now be obtained simply 
by taking the direct product of the matrix of coefficients for a 12-fold shell, which 
have been given in table 3 of 11, with the matrix of coefficients for the C;, modes 
shown above. Table 2 defines the atom labels which correspond to these combinations 
if the numbering 1, . . . , 12 is taken to be equivalent to that in table 3 of XI. Irreducible 
representation labels for (C;,) A1 modes are determined by associating the 12-fold 
modes with the top row of o h  representations shown in table 1. Other subshell modes 
then generate the remaining rows of table 1. 

For example, adopting the convention that the atom label in table 3 of I1 comes 
first, the 48-element 8 , 3  coefficient array (8 corresponding to the 7 row of TZg in 
table 3 of I1 and 3 to the third (or B1) row of (2.1)) is 

(0000, +-+-, 0000)0(+--+) = 

0000,0000,0000,0000, +--+, -++-, +--+, -++-, 
0000,0000,0000,0000. 

In this array the elements correspond sequentially to the atom array 2, 3, 27, 26, 29, 
28 etc given in table 2. Using this notation for the coefficient array corresponding to 
the atom permutation representations it is thus possible, following the method 
described in 11, to use dual labelling (like 8 , 3  above) to define the complete set of 
symmetry coordinates. 

The generation of symmetry coordinates then proceeds in the same way as was 
described in I1 by reducing the direct products rPOTlu where rp is any one of the 
permutation representations determined above and T1, corresponds to single atom 
displacements. Following the notation of I1 we can write such symmetry coordinates 
in terms of Cartesian coordinates with superscripts denoting the array of coefficients 
and atomic labels generated by the permutation representation. It is not even necessary 
to write out the full 48 x 48 table, because, as has been explained above, this is defined 
by the direct product of the rows of table 3 of I1 with the numbered rows of the 
coefficient arrays given in table 2. The dual labels may then be used as superscripts 
in the description of symmetry coordinates (see 11). 

Given the 48-fold shell symmetry coordinates it is possible to obtain consistent 
symmetry coordinates for both the 24-fold shell and 12-fold shell symmetry simply 
by identifying the arrays in different rows of table 2. If we identify rows such that 
row 1 =row 2, row 3 =row 4, then we obtain symmetry coordinates of the 24-fold 
shell with ( p  p q )  atomic positions. If we identify row 1 =row 4 and row 2 =row 3 
we obtain symmetry coordinates of the 24-fold shell with ( p q  0) atomic positions. 
Identification of all rows of table 2 provides symmetry coordinates for the 12-fold shell. 

A defect of the C;, labelling scheme is that it cannot be applied to the subgroup 
0 of o h .  This suggests that we introduce the Abelian group DLh = C;,0S2 to provide 
an alternative labelling. In this case the labelling has the same pattern if we use DL 
as a subgroup of 0. Table 3 defines the Dih subshells of o h  and shows that they bear 
a close relationship to the subshells for C;,. Table 4 gives the correlation theorem 
relationships between the irreducible representations of D’ and 0. Corresponding 
relationships between the irreducible representations of D;h and Oh are obtained by 
inserting the appropriate subscripts g, U. (Note that Dk must not be identified with 
the invariant subgroup of O-in fact six conjugate subgroups are used in this labelling 
scheme.) 
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Table 4. Correlation table for O/D; representations. Note that D; contains two Ci 
operations. 

3. Symmetry coordinates for atom shell displacements on the 
boundaries of cyclic regions 

Cyclic regions in a crystal are regions which reproduce the whole crystal under the 
operations of a translation group T which is a subgroup of the full Bravais lattice 
group B. Cyclic region symmetry coordinates satisfy periodic boundary conditions at 
the surfaces of the region. In this section we shall investigate the effect of such 
conditions on the symmetry coordinates obtained in I1 and in the previous section. 

The effect of periodic boundary conditions is to constrain sets of atoms on opposite 
boundaries of a cyclic region to move in the same way. This makes certain symmetry 
coordinates inoperative. Clearly, the simplest method of imposing such conditions is 
to relate them to the subshells used to generate -the symmetry coordinate labelling. 
We can achieve this by including pairs of atoms on opposite boundaries in a given 
subshell. 

It is useful, at this point, to introduce a specific example, and we shall consider 
the 24-fold ( p  q 0) shell for which explicit symmetry coordinates were obtained in 11. 
In order to use the same set of symmetry coordinates as were generated in I1 with a 
different definition of the subshells, it is necessary to relabel the atoms as is shown 
in figure 2. The numbers ( n )  differentiate the six subshells used in a C4v labelling 
scheme. Periodic boundary conditions identify atoms on opposite faces so that, with 
the labelling shown, pairs of ions within a subshell are always identified. Considering 
characters, it is then easy to show that the permutations of a two-atom subshell 
transform as Al + B1 under C4v. It thus follows that all symmetry coordinates labelled 
E in table 1 of I1 are eliminated by the cyclic boundary conditions wirh the revised 
labelling of the atoms shown in figure 2. The allowed permutation labels are thus 
A1lAlg, A&, AIITIu, BIIAZg, BlIE, and B11T2,,. 

If, on the other hand, we retain the labelling given in 11, the effect of cyclic boundary 
conditions is to identify the subshells in pairs: (3)=(4), (2)=(5), (1)=(6). In this 
alternative labelling scheme all three C4" labels (Al, B1 and E) survive, but each label 
corresponds to a restricted set of O h  labels. These can be read off table 1 of I1 by 
selecting the permutation symmetry coordinates which satisfy the three equivalences 
set out above. They are AIIAlg, AI~E,, BllTZu, EITl,, and EITzU. 

It follows that, in the case of periodic boundary conditions, identical sets of Oh 
labels will be classified by different ClV labels according to the distribution of atoms 
in the subshells. Thus the labelling is not explicit unless we adopt a convention such 
that the subshells always contain equivalent pairs of atoms, if this be possible. In 
general terms, a labelling must be both unique (distinct labels for all modes) and 
explicit (specified shells and subshells) to generate a specific set of symmetry co- 
ordinates. 
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Figure 2. Atom positions in one 24-fold shell. 

Periodic boundary conditions can also be applied to the 48-fold shell symmetry 
coordinates defined in the previous section. They correspond to the row identifications 
1 =4 and 2 = 3 in table 2, so that only the AI, B1 labelled symmetry coordinates 
survive. In Dhh labelling periodicity conditions identify rows 1 4, 2 = 3, 5 SS 8 and 
6 9 7 in table 3, allowing only A,, Blg, B2,, and B3,, subshell representations. 

4. A cyclic region group 

The smallest cyclic region for a face-centred cubic lattice is shown in figure 3. It 
generates a 192-element group which can be obtained by combining the 24-element 
group of proper rotations (0) with eight distinct translations. Translations which move 
atoms to similarly numbered positions in figure 3 are taken to be identical to the 
identity. An alternative way of expressing this symmetry is to note that it is produced 
by reducing the operations in the space group 0; modulo T, where T is the translation 
group produced by doubling the primitive translations of the face-centred cubic Bravais 
lattice. This produces a group with 384 elements corresponding to the direct product 
of the group defined by figure 3 with the group (Sz) containing the identity and the 
inversion. This 384-element group will be denoted 0;/(2FCC), indicating that it is 
the factor (or quotient) group of 0; with respect to the translation group T defined 
above. 

The irreducible representations of 0;/(2FCC) are just the irreducible representa- 
tions of 0; which satisfy the periodic boundary conditions. These are the representa- 
tions at the l", X and L points in the Brillouin zone. There are 13 representations 
of each parity and hence 26 classes overall. The character table for proper rotations 
and (cyclic) translations is given in table 5 ,  where we have introduced an alternative 
notation which links the space group irreducible representations with the Schonflies 
notation for the group of the k vector. 
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A 2  

Figure 3. Cyclic region generated by the group O;/(ZFCC). We h a w  adopted a scale 
such that the atoms labelled 5 are at (1 1 0 )  and (-1 -1 0). Broken lines indicate one 
surface segment of the region, which has the same form as the BCC Brillouin zone. 
Repeated labelling is used for equivalent atoms, so that region contains only one distinct 
atom with each label, or eight in all. 

By definition, the atomic positions shown in figure 3 all transform into each other 
under the operations of 02/(2FCC). This set breaks down into three distinct shells 
under Oh operations, and may thus be referred to as a supershell. By determining 
how many atoms are invariant under the cyclic group operations it is easy to construct 
the characters of the supershell permutation representation. (We found that the most 
reliable way of doing this is to write a computer program.) These are the (000) 
characters given in table 5 .  They correspond to the representation A;,+ A % +  Akg. 

We now develop the model by supposing that figure 3 corresponds to the positive 
ions in an alkali halide (NaCl structure) lattice. The complementary set of eight 
negative ions also form a supershell in the positions ( O O l ) ,  ( O l O ) ,  (loo), (-1 00),  
(0  -lo), (00 -l), (111) and (-1 11). The last two atoms each generate sets of four 
equivalent atom positions on tetrahedra inscribed in the cube shown in figure 3. This 
supershell is labelled (100) in table 5 ,  and the characters given in the table correspond 

The relations between cyclic region group and point group representations can be 
obtained from Loudon’s (1964, table 1) analysis of the relation between space group 
and point group representations in cubic crystals. In Schonflies notation we have, for 
example, that AE+A1,+E,,  Akg+A1,+TZg and A~,-,A,,+T,,. It follows that 
cyclic region group irreducible representations provide an alternative to shell labelling 
in distinguishing (for example) the two occurrences of AI, for the negative ions. 

The introduction of larger cyclic region groups, such as O2/(4FCC) with 48 x 64 = 
3072 elements and 64 classes, for labelling purposes may result in a prohibitive amount 
of effort. Nevertheless there are likely to be advantages in using the group O:/t2FCC, 

to A & + A ~ + A ; ~ .  
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in problems concerning the cyclic region generated from the unit cell by 0;/(4FCC). 
Note that 0:/(2FCC) is a factor group of 0;/(4FCC), not a subgroup. 

In order to illustrate the application of factor groups of cyclic region groups we 
have determined the characters for intervening supershells of atoms generated from 
atoms in the positions ( $ f $ ) ,  ( $ 5 0 )  and (f 0 0 )  in figure 3. These supershells are 
described in table 6 and their characters are given in table 5 .  They correspond to the 
following irreducible representations: 

(4 $ 4): A ; ~  + A;, + A?, + B;, + A ? ~  + A;, 

(;io): A~ lg + E; + T;, + A?. + E: + B Fg + B 5, + A?, + A:, + AL + E; + E, L 

(4 0 0 ) :  

Note that A: is repeated in the ($ 0 0) permutation representation, showing the need 
to use the correlation theorem (or some other method) to distinguish the symmetry 
coordinates in this case. 

Ay,+ E: + Tf, + 2AE + By, + A;,, + E t  + A:, + Ai, + E; + E:. 

Table 6. Supershells in the region O:/(4FCC) of the NaCl structure with respect to the 
operations of the group 0;/(2FCC). See figure 3 for atomic positions. 

Ionic charge Supershell label Oh shells (number of atoms) 

000 ( I ) ,  110 (6), 200 (1) + 0 0 0  
+ 1 0 0  lOO(6), 111 (2) 

+ $ $ O  $iO(12), l t i(24), ; ;0(12) 
- t o o  f00 (6), If0 (241, 114 (121, $00 ( 6 )  

1 1 1  
2 2 2  + 4 + (8) 3 11 (8) , 2  2 2 
_ _ _  - 

It is, in fact, possible to apply the correlation theorem in two stages using the 
subgroup sequence 0:/(2FCC) 3 o h  3 D2h. Note that o h  is not an invariant subgroup 
of 02/(2FCC). There are four conjugate o h  groups, each leaving one of the pairs of 
atoms (1,2), (3,6), (4,7) or ( 5 , 8 )  of figure 3 in fixed positions. The relations between 
02/(2FCC) and o h  irreducible representations may be deduced from the pure rotation 
characters in table 5 or read directly from Loudon (1964, table 1). 

As we have stated previously, the solutions of one-electron problems and (pure) 
lattice vibration problems for a cyclic region form a subset of the full lattice solutions. 
Hence no advantages accrue from using cyclic region group labelling rather than the 
full space group labelling. Cyclic region solutions are only important when the finite 
size of the region can be used to advantage. One example of this occurs in finding 
exact many-electron solutions when correlation terms (such as the Hubbard term) are 
present in the Hamiltonian. Small region solutions (e.g. see Rossler et a1 1981) can 
then be related to, but are not equivalent to, the full lattice solutions (D J Newman 
and Betty Ng, unpublished). 

This series of papers was originally stimulated by the need to develop a formalism 
to describe local distortions and local strain effects in the neighbourhood of isolated 
substituted ions, At some level of approximation the form of solution of such problems 
in the immediate neighbourhood of quasi-isolated substituted ions (i.e. a substituted 
ion in each cyclic region) will be the same as that for an isolated substituted ion. If, 
for example, we consider the case of a single substituted ion at the centre of the region 
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with symmetry group 0;/(4FCC), the symmetry of the cyclic region will be reduced 
to o h .  On the other hand the group 0:/(2FCC) describes a system with substituted 
ions at all points on the supershell shown in figure 3. We would expect the displace- 
ments of the nearest neighbours of the substituted ions to be similar in both cases. 
Approximate 0;/(4FCC) region solutions can then be constructed from the 
0:/(2FCC) region solutions using the decoupling transformation method described 
by Newman (1973a, b). We shall not go into the details of this here, but just point 
out that it should be possible to refine such solutions by a perturbation approach. 

Finally, we should note that certain formal problems remain to be solved. In 
particular, cyclic region groups are not in general simply reducible (e.g. see the result 
for ELOTf in table 5 ) ,  so that further separation criteria are necessary when symmetry 
coordinates are constructed from direct products of the vector and permutation 
representations. 

5. Discussion 

We have described three distinct developments of the work in papers I and 11. A 
consistent scheme for labelling and generating symmetry coordinates for the 48-fold, 
24-fold and 12-fold shells of atoms in o h  symmetry using the set of conjugate Chv 
subgroups has been described. This was then related to an alternative scheme using 
the set of conjugate Dbh subgroups. Secondly the effect of using periodic boundary 
conditions defining cyclic regions has been investigated. Finally, we have introduced 
an entirely different approach to the labelling of symmetry coordinates in cyclic regions, 
indicating certain advantages that this may have over point group shell labelling. In 
particular, we have suggested that cyclic region group symmetry coordinates may be 
useful in the solution of correlated electron problems as well as local distortion and 
local strain effects in crystals. 
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